

Recent progress in first-line treatment of multiple myeloma

Michel Delforge
University Hospital Leuven
Belgium

Tallinn, 19th October 2017

Goals of novel agent-based induction therapies

- Achieve a rapid and marked reduction in tumor burden, up to the VGPR and sometimes even CR level
- Reverse disease-related complications, such as hypercalcemia, renal failure and anemia
- Ameliorate symptoms
- Enable the successful collection of peripheral blood stem cells
- Minimize toxicities precluding subsequent autologous SCT

Outline of first-line treatment

ESMO guidelines 2016

Eligibility for ASCT

Yes

Induction: 3-drug regimens

VTD

VCD

RVD

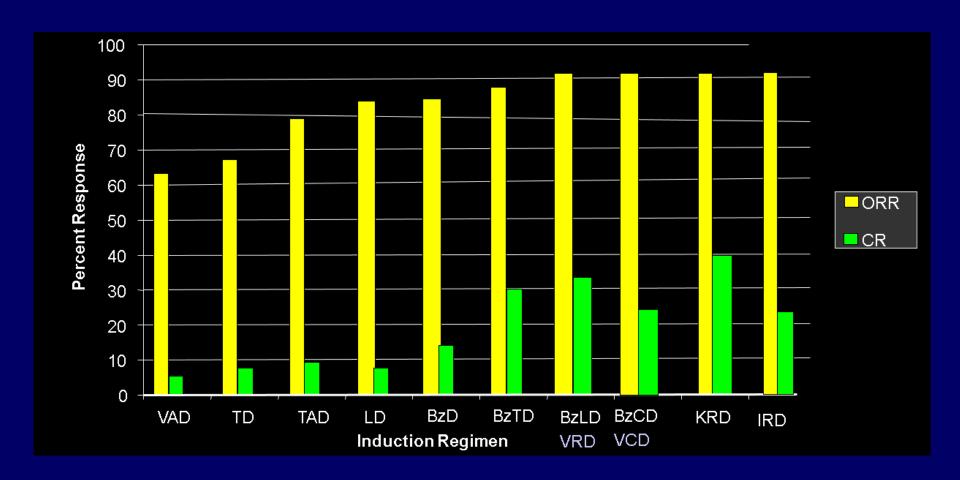
PAD

200 mg/m² Melphalan followed by ASCT

Maintenance Lenalidomide No

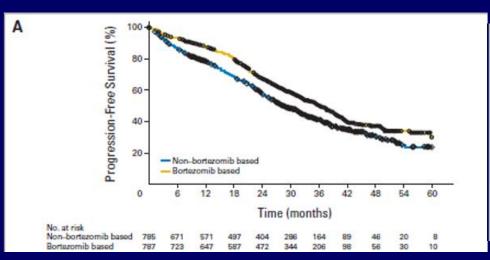
First option: VMP, Rd, VRD

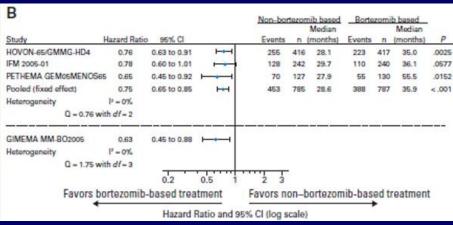
Second option: VCD, MPT


Other options: BP, CTD, MP

What is the most optimal induction regimen?

taking into consideration:


- published data
- drug availability
- toxicities


Overview of induction regimens

Adapted from: How I treat MM in younger patients by Stewart K, Richardson P, San Miguel JF. Blood 2009; 114: 5436-43

Bortezomib-based induction regimens meta analysis

	Bortezomib- based(n=775)	Non-bortezomib based (n=772)	P-value
CR+nCR post transplant	38%	24%	P<0.001
Median PFS	36 mo	29 mo	P<0.001

Bortezomib-based induction regimens VTD or VCD?

- Multi-centre, randomized, open-label trial
- Patients: symptomatic de novo multiple myeloma, <66 years of age
- Treatment: VTD x 4 versus VCD x 4 as induction therapy prior to ASCT
 - Bortezomib 1.3 mg/m²/d, **SC** D1, 4, 8 and 11 in each arm

	VTD	VCD	P value
	N = 169	N = 169	
≥CR	13.0%	8.9%	0.22
≥ VGPR	66.3%	56.2%	0.05
≥ PR	92.3%	83.4%	0.01

Response: Centralised assessment (Dr Dejoie, Nantes) IMWG criteria 2011 Intent-to-treat population

RVd for induction

results from the phase II study

Table 4. Best response to treatment for the treated population and the phase 2 population

		All patients (N = 66)		Phase 2 population (n = 35)		
Response*	n	%	90% CI	n	%	90% CI
CR	19	29	20-39	13	37	24-52
nCR	7	11	5-19	7	20	10-34
VGPR	18	27	18-38	6	17	8-31
PR	22	33	24-44	9	26	14-41
CR + nCR	26	39	29-50	20	<u>57</u>	42-71
CR + nCR + VGPR	44	67	56-76	26	74	59-86
At least PR	66	100	96-100	35	100	92-100

CI indicates confidence interval; CR, complete response; nCR, near-complete response; PR, partial response; VGPR, very good partial response.

*Per EBMT criteria,²³ all response categories, including VGPR, required a confirmatory assessment at 6 weeks.

n=8 cycles

Carfilzomib-lenalidomide-dexa (KRd) phase I/II study

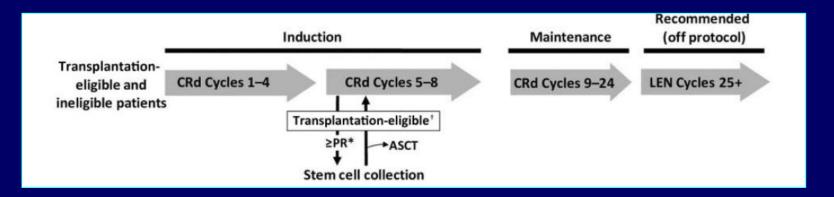


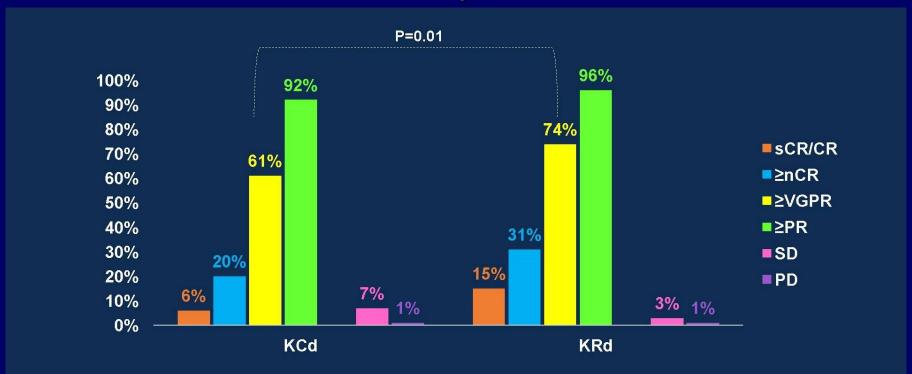
Table 3. Best response to treatment in evaluable patients

		Response, n (%)*				
	≥ PR	≥ VGPR	≥ nCR	sCR		
All patients (N = 53)	52 (98)	43 (81)	33 (62)	22 (42)		
Treatment duration						
4+ cycles (n = 49)	49 (100)	43 (88)	33 (67)	22 (45)		
8+ cycles (n = 36)	36 (100)	33 (92)	28 (78)	22 (61)		
12+ cycles (n = 29)	29 (100)	25 (86)	21 (72)	18 (62)		

IMWG indicates International Myeloma Working Group; nCR, near-complete response; PR, partial response; sCR, stringent complete response; and VGPR, very good partial response.

^{*}Assessed by Modified IMWG Uniform Criteria with the addition of nCR.

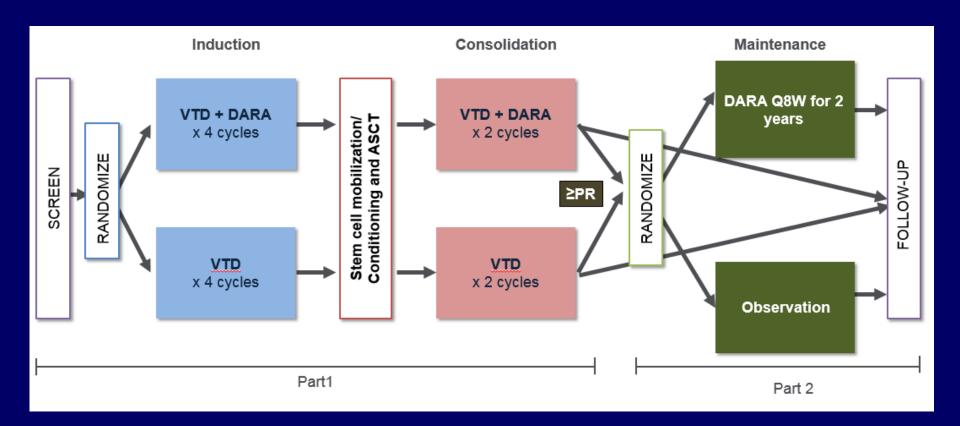
KCd vs KRd


carfilzomib, lenalidomide, and dexamethasone versus carfilzomib, cyclophosphamide, and dexamethasone

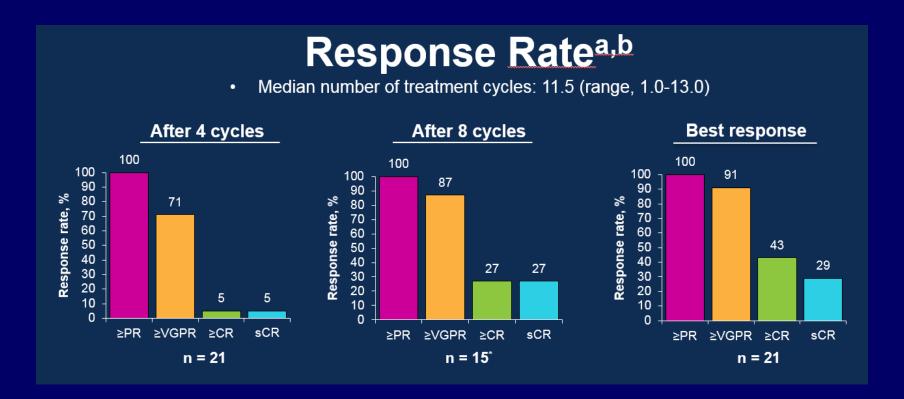
- Newly-diagnosed MM
- Median age: 57 years

KCd vs KRd

best response


KCd: Carfilzomib, Cyclophosphamide, dexamethasone; KRd: Carfilzomib, Lenalidomide, dexamethasone; sCR: stringent Complete Response nCR: near Complete Response; VGPR: Very Good Partial Response; PR: Partial Response; SD: Stable Disease; PD: Progressive Disease.

VTD vs VTD + daratumumab:


study design

KRd plus daratumumab

phase I-II study

Depth of response improved with duration of treatment

*5 patients who proceeded to ASCT before C8 and 1 patient who discontinued due to PD at C7 were excluded.

PR, partial response; CR, complete response.

aResponse-evaluable population. bResponse rate (≥PR) evaluated by IMWG criteria; M-protein measurements by central lab assessment.

Conclusions for induction

- Induction regimen: a combination of a proteasome inhibitor seems to offer the best responses (e.g. VTD, VRD; future: KRd, IxaRd)
- number of cycles: usually 4 cycles are administered. For regimens like VTD this is mainly driven by neurotoxicity. Regimens like KRd give better responses with prolonged administration
- the added value of a monoclonal antibody like an anti-CD38 or elotuzumab is under investigations
- no significant impact of any regimen on stem cell mobilization efficiency

Is there currently still a role for high-dose chemotherapy?

Historical data:

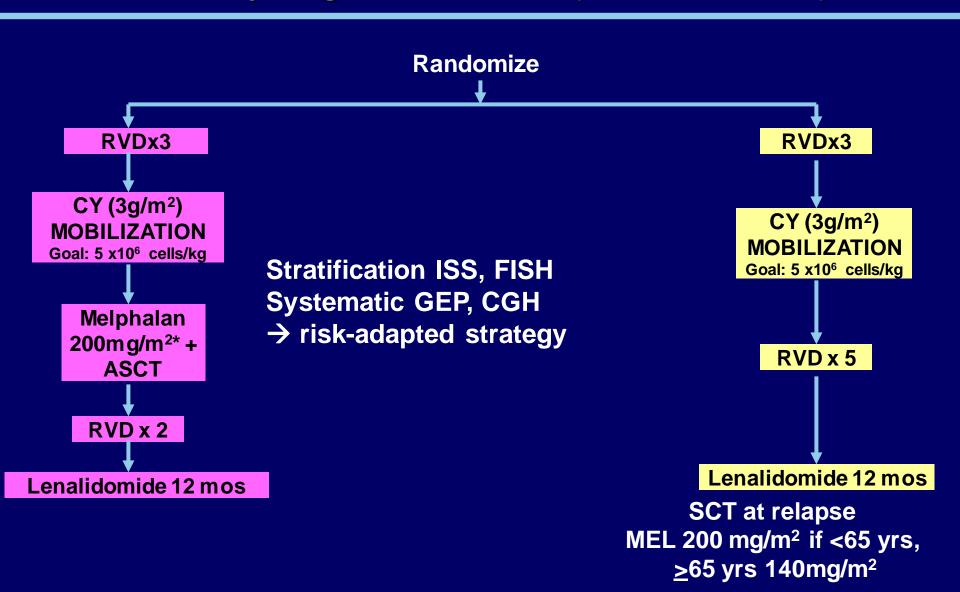
ASCT is superior to conventional chemo

Table 2. Randomized trials: single ASCT versus conventional chemotherapy

Reference	CR, %	Median PFS, mo	Median OS, mo
Attal et al ²³ (1996)	22 vs 5	28 vs 18	57 vs 42
Child et al ²⁴ (2003)	44 vs 9	32 vs 20	55 vs 42
Bladé et al ²⁵ (2005)	30 vs 11	42 vs 34	67 vs 65
Fermand et al ²⁶ (2005)	8.5 vs 7	25 vs 19	47.8 vs 47.6
Barlogie et al ²⁷ (2006)	17 vs 15	25 vs 21	58 vs 53

Attal et al. New Engl J Med 1996; 335: 91 Child et al. New Engl J Med 2003;348: 1875

Bladé et al. Blood 2005; 106: 3755

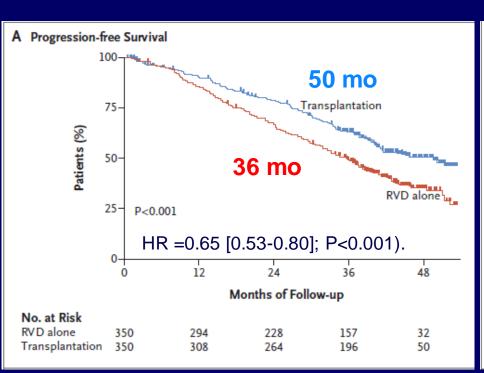

Fermand et al. J Clin Oncol 2005; 23: 9227 Barlogie et al. J Clini Oncol 2006;24: 929

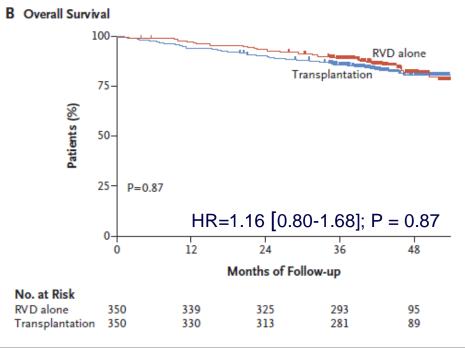
IFM/DFCI 2009 Study

Newly Diagnosed MM Pts (SCT candidates)

IFM 2009 trial:

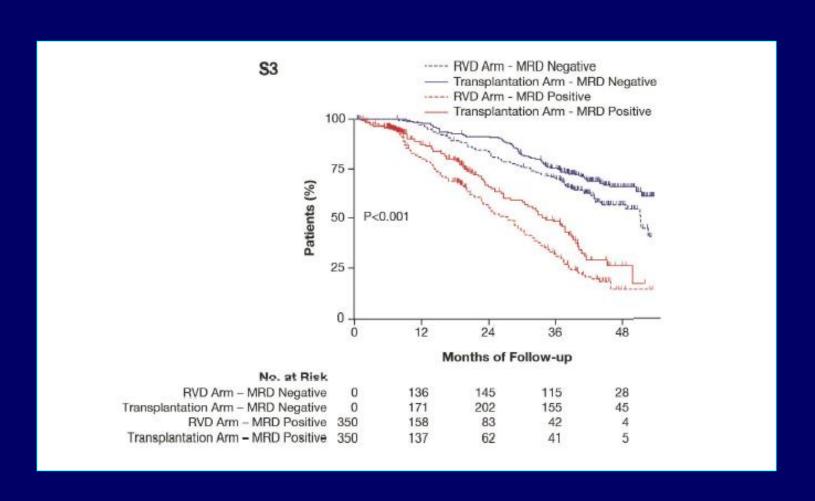
response rates


Table 2. Response to Treatment.*			
Outcome	RVD-Alone Group (N=350)	Transplantation Group (N = 350)	Adjusted P Value†
Best response during the study — no. (%)			0.02
Complete response	169 (48)	205 (59)	
Very good partial response	101 (29)	102 (29)	
Partial response	70 (20)	37 (11)	
Stable disease	10 (3)	6 (2)	
Complete response — no. (%)	169 (48)	205 (59)	0.03
Complete response or very good partial response — no. (%)	270 (77)	307 (88)	0.001
Minimal residual disease not detected during the study — no./ total no. with complete or very good partial response (%);	171/265 (65)	220/278 (79)	<0.001


^{*} Responses were assessed according to the International Uniform Response Criteria for Multiple Myeloma. Percentages may not total 100 because of rounding.

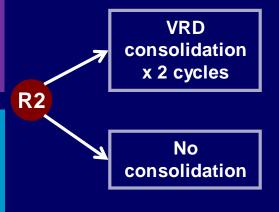
[†] P values were adjusted for multiplicity with the use of the Holm procedure to control the family-wise error rate at 0.05.

[#] Minimal residual disease was detected by means of flow cytometry. As a result of decisions made by the patient or the investigator, 5 patients in the RVD-alone group and 29 patients in the transplantation group were not tested.


IFM 2009 trial: PFS and OS

IFM 2009 trial:

Progression-free survival according to MRD status


EMN02/H095 MM trial:

study design

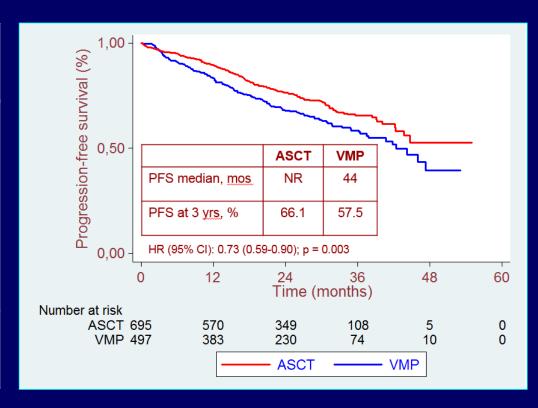
collection

Melphalan (HDM) 200 mg/m² x 1-2 courses* + single or double ASCT (695 pts)

All pts received lenalidomide maintenance until R/P

Stratification: ISS I vs. II vs. III

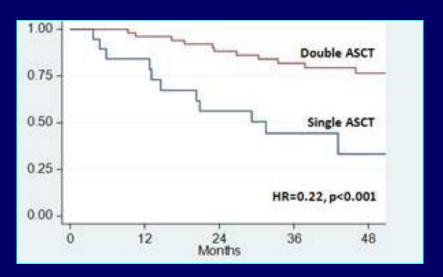
Randomization to VMP vs HDM (1:1) in centers with a fixed single ASCT policy Randomization to VMP vs HDM-1 vs HDM-2 (1:1:1) in centers with a double ASCT policy

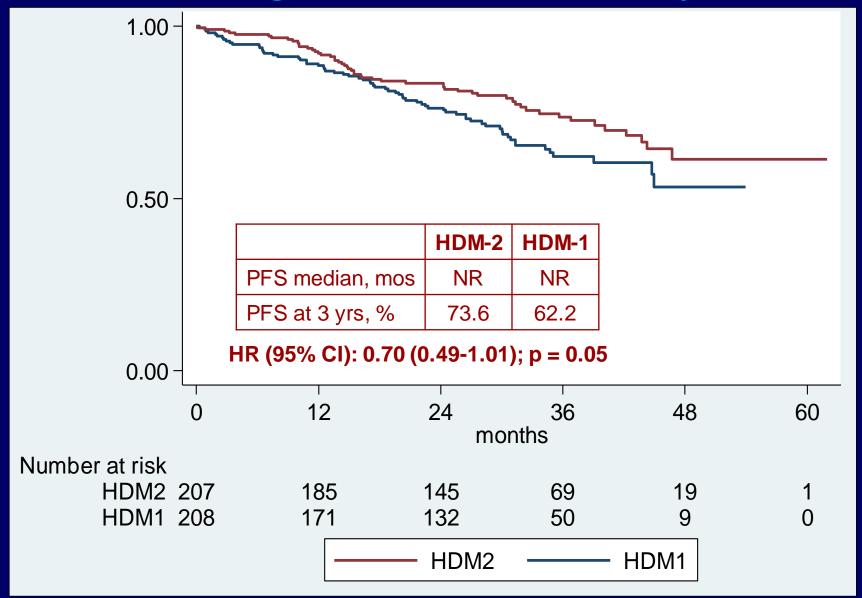

EMN02/HO95 MM trial:

First interim analysis

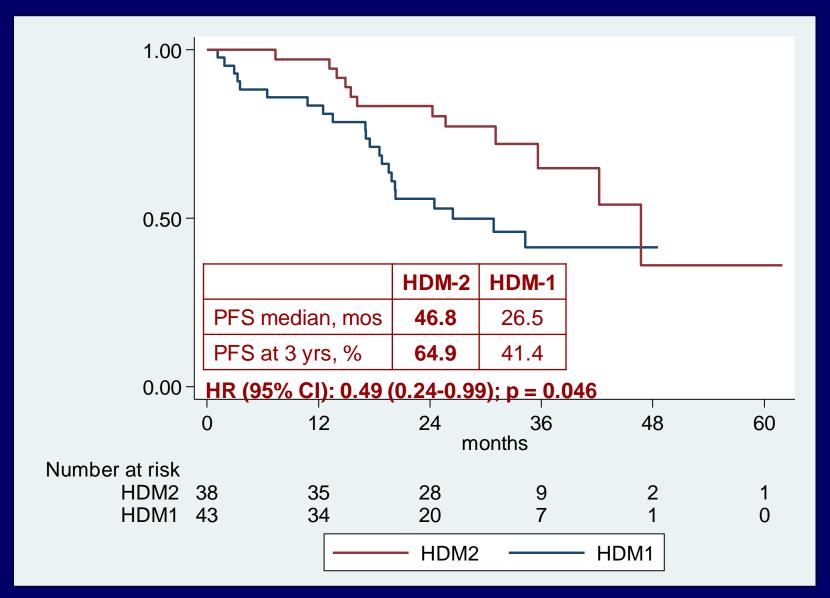
Best response

	ASCT (N=641)	VMP (N=451)	P- value
sCR, %	17.0	18.2	
CR, %	25.3	25.3	
VGPR, %	43.2	30.4	
PR, %	11.2	14.9	
<pr, %<="" td=""><td>3.3</td><td>11.2</td><td></td></pr,>	3.3	11.2	
At least VGPR, %	85.5	73.8	<.0001

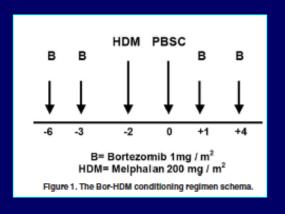

PFS by randomization


Autologous SCT is one enough?

After first autologous stem-cell transplantation					
Complete response	89 38% 31.5-43.9)				
Complete or near complete response*	123 (52%, 45·7-58·5)				
Very good partial response or better	186 (79%, 73.6-84.0)				
Partial response or better	220 (93%, 90·0-96·4)				
Minimal response or stable disease	15 (6%, 3·2-9·5)				
Progressive disease	1 (<1%, 0.0-1.3)				
After second autologous stem-cell trans	plantation				
Complete response	98 42% 35·2-47·8)				
Complete or near complete response*	130 (55%, 48-7-61-4)				
Very good partial response or better	193 (82%, 76-9-86-7)				
Partial response or better	220 (93%, 90·0-96·4)				
Minimal response or stable disease	14 (6%, 2.9-8.9)				
Progressive disease	2 (1%, 0·0-2·0)				

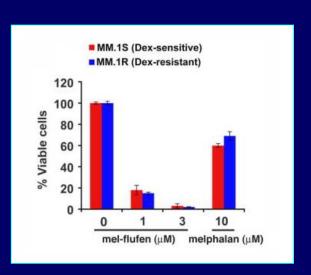

OS benefit with double ASCT particularly relevant for pts who failed CR after bortezomib-based induction therapies and who had high-risk cytogenetics or ISS 3

EMN02: Single or tandem ASCT for all patients



EMN02: Single or tandem ASCT for high-risk cytogenetics

Time to further improve the conditioning regimen?


Combination of melphalan with bortezomib

	All patients				
Response, n (%)	IFM 2005-01 (n = 115)	Bor-HDM (n = 46)	Р		
CR	13 (11)	16 (35)	.001		
VGPR*	49 (43)	16 (35)			
PR	50 (43)	12 (26)			
SD	3 (3)	2 (4)			
CR + VGPR	62 (54)	32 (70)	.078		

Roussel et al. Blood 2010;115:32

New drug formulations: mel-flufen

Curing myeloma at last: defining criteria and providing the evidence

Bart Barlogie, Alan Mitchell, Frits van Rhee, Joshua Epstein, Gareth J. Morgan and John Crowley

What are the treatment goals?

- full eradication of the disease (cfr acute leukemia)?
- continuous suppression of minimal residual disease (cfr CML)?
- bringing the disease back to an indolent phase (cfr some forms of indolent lymphoma?)

Aims of consolidation and maintenance therapy

Consolidation

- Improve response/induce deeper response following therapy
 - by administration of treatment for a limited period

Maintenance

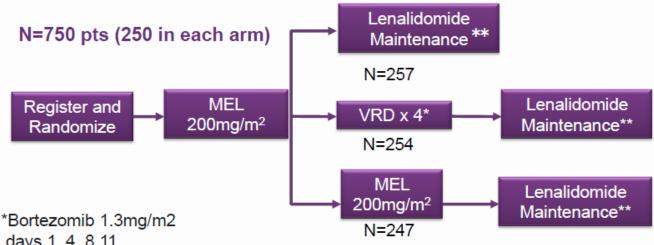
- Maintain response achieved following therapy
 - by administration of treatment for a prolonged period

Reduce the risk of relapse extend progression-free and overall survival

Phase 3: VTD vs TD (GIMEMA study)

impact of VTD consolidation

Per-protocol analysis: n=321, received entire treatment program

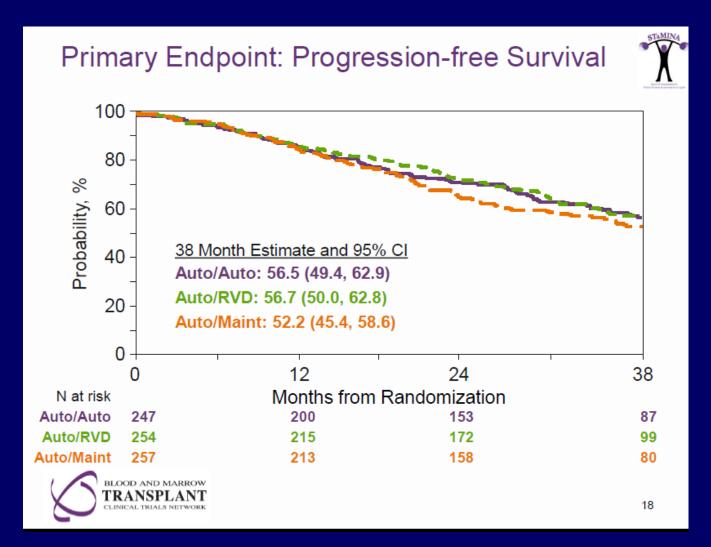

	VTD	TD	р
CR post-consolidation	61%	47%	0.012
Upgrade to CR post-consolidation	30.4%	16.6%	0.030
Landmark analysis from start of consolidation (30	months m	edian foll	ow up)
3-yr PFS	60%	48%	0.025

- Frequency of grade 2/3 PN
 - 8,1% VTD, 2,4% TD
- VTD arm: patients received 93% of planned doses of bortezomib and thal

Consolidation vs maintenance: the STAMINA trial

BMT CTN 0702 Stem Cell Transplantation for Multiple Myeloma Incorporating Novel Agents: SCHEMA

days 1, 4, 8,11 Lenalidomide 15mg days 1-15 Dexamethasone 40mg days 1, 8, 15 Every 21 days



**Lenalidomide x 3years:

10mg/d for 3 cycles, then 15 mg/d Amendment in 2014 changed Lenalidomide maintenance until disease progression after report of CALGB 100104.

The STAMINA trial:

progression-free survival

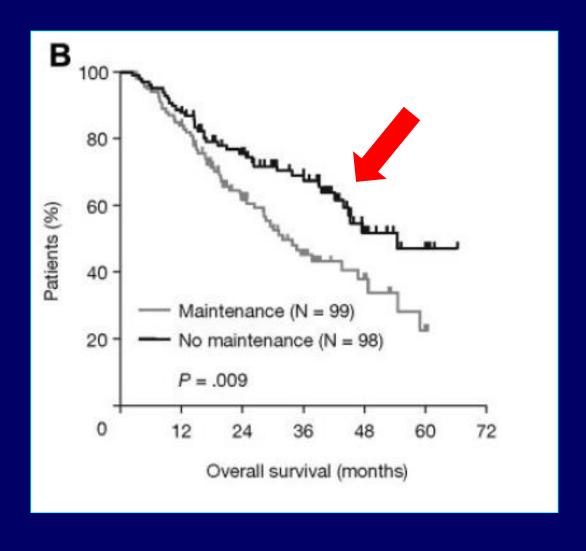
The STAMINA trial:

delivered treatment vs intention to treat

Compliance with each intervention

	Auto// (N=2	47)	(N=	254)	_ `	257)
	N	%	N	%	N	%
Received ^{2nd} Intervention						
No	79	32.0	30	11.8	-	-
Yes	168	68.0	224	88.2	-	-
Started maintenance						
No	41	16.6	43	16.9	14	5.4
Yes	206	83.4	211	83.1	243	94.6

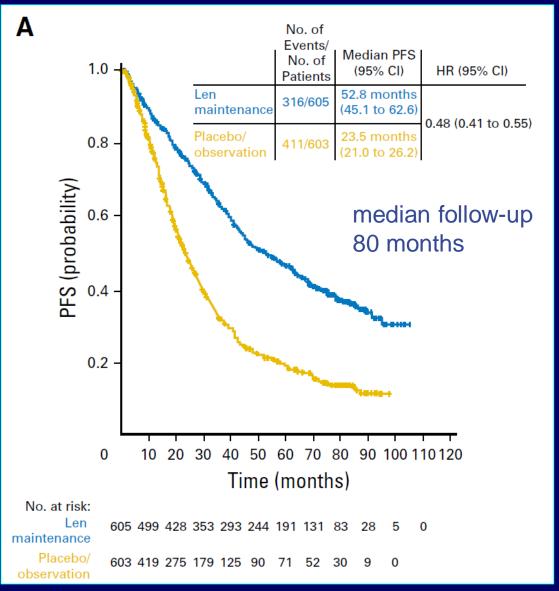
Key Questions for Maintenance

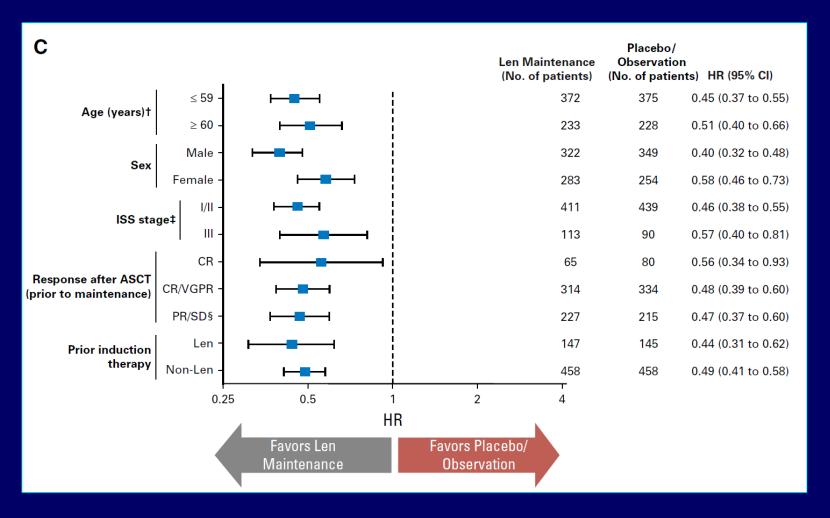

- Which drug at which dose ?
 - Chemotherapy
 - Steroids
 - Interferon-α
 - Immunomodulatory agents:
 - thalidomide
 - lenalidomide
 - Proteasome inhibitors: bortezomib, ixazomib
- Which patients benefit most from maintenance ?
- How long should maintenance treatment be given ?
 - Based on response
 - Based on treatment duration:
 - for a fixed duration (eg, 1 or 2 y)?
 - until progression ?

Thalidomide maintenance therapy

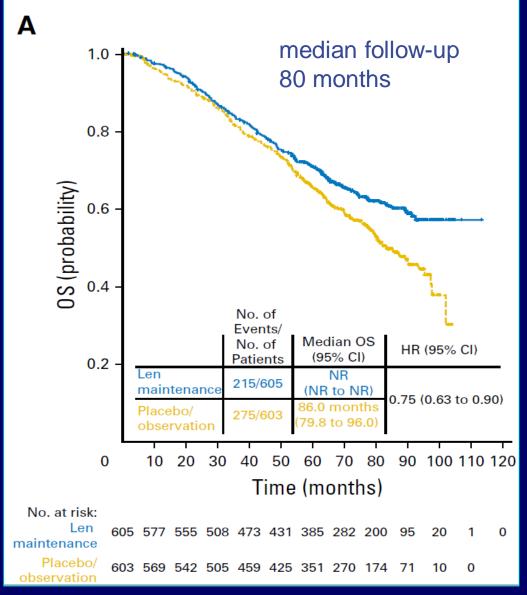
	Significant improvement in PFS with maintenance therapy	Significant improvement in OS with maintenance therapy	Survival after relapse
Spencer	Yes	Yes (3 years follow up)	Similar in all groups
Attal	Yes	Yes (@ 39 m), but OS advantage disappeared with longer follow-up (5.7 years)	Similar in all groups
Barlogie	Yes	Yes (7.2 years follow-up)	Reduced OS after thal exposure
Lokhorst	Yes	No	Reduced OS after thal exposure
Morgan	Yes	No	Reduced OS after thal exposure
Stewart	Yes	No	Reduced OS after thal exposure

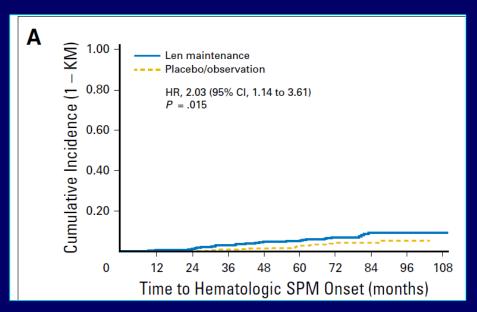
Thalidomide maintenance:

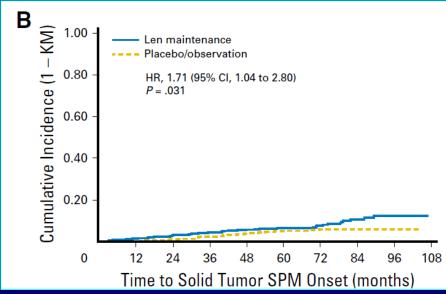

adverse prognosis in high-risk cytogenetics


Adverse cytogenetics defined as:

- amp (1q)
- t(4;14)
- t(14;16)
- t(14;20)
- del(17p)


Lenalidomide maintenance: PFS


Lenalidomide maintenance: subgroup analysis



Lenalidomide maintenance: OS

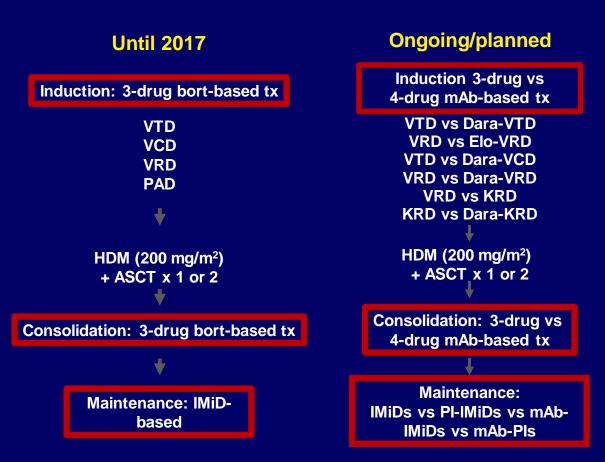
Second primary malignancies (SPM) with lenalidomide maintenance

McCarthy et al. J Clin Oncol 2017; Epub Jul 25

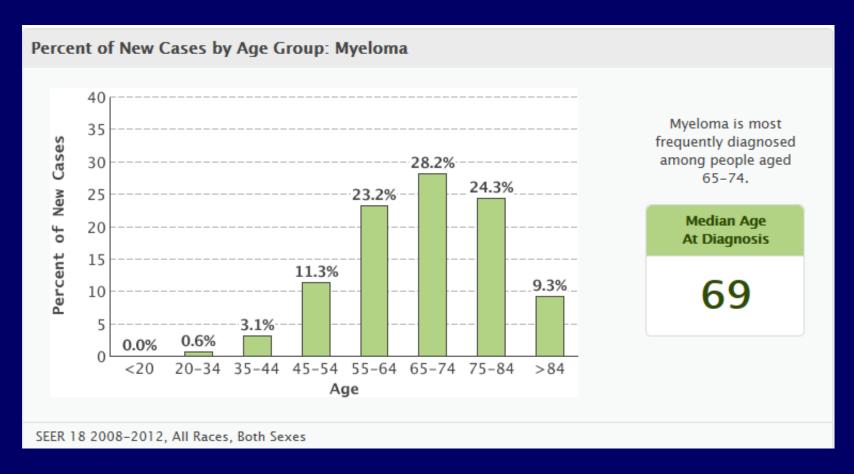
Maintenance with proteasome inhibitors

Bortezomib

Study details*	n	Treatment	PFS	os
HOVON 65 MM / GMMG-HD4 ¹ Median follow-up: 91.4 months (Overall trial)	413	PAD x 3 \rightarrow HDM \rightarrow Bortezomib every 2 weeks for 2 years VAD x 3 \rightarrow HDM \rightarrow Thalidomide daily for 2 years	34 m 28 m; p=0.001	48% 45%; p=0.22 bortezomib plus tandem ASCT abrogates neg impact of del 17p
PETHEMA/GEM ² Median follow-up: 34.9 months (From maintenance start)	89 87 90	VT (1 cycle bortezomib every 3 m, thal daily) for 3 years Thal (daily for 3 years) Interferon- α 2b (3 x week for 3 years)	Significant benefit for VT P=0.0009	Not significantly diffferent between arms

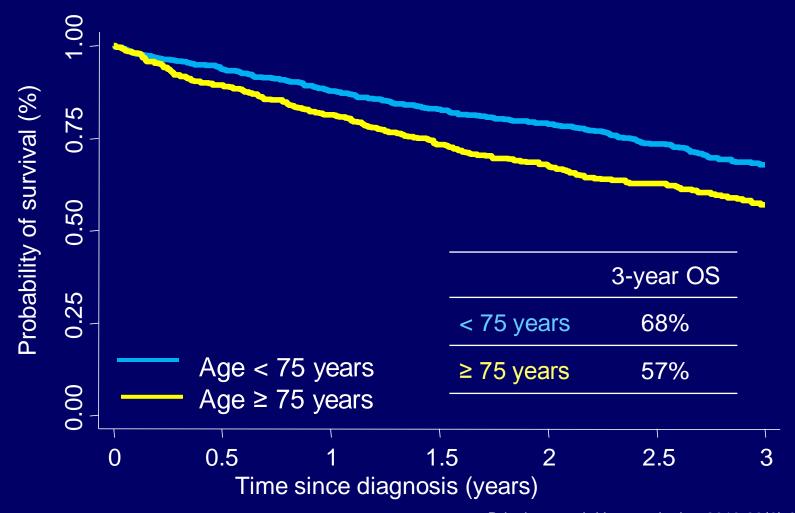

Ixazomib

Study details	n	Treatment	PFS
MLN9708 ³ Median follow-up: 31.2 months (Overall trial)	21	Ixazomib + Rd → ASCT (eligible patients) → ixazomib maintenance	Not reached


^{1.} Sonneveld et al. ASH 2015 (Abstract 27), oral presentation;

^{2.} Rosinol et al. ASH 2012 (Abstract 334), oral presentation; 3. Kumar et al. ASH 2014 (Abstract 82), oral presentation

Current and future treatment algorithm for transplant-eligible MM patients



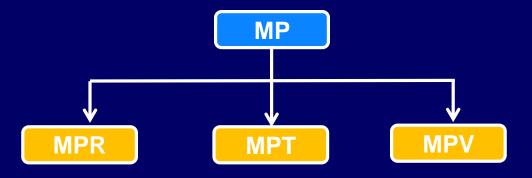
Myeloma is primarily a disease of elderly patients

Survival in newly diagnosed elderly MM patients negative impact of age

Meta-analysis of European trials (MP vs MPT, VMP vs VTP, VMP vs VMPT-VT); 1435 newly diagnosed MM patients

Treatment optimization in the elderly

Aim: to deliver effective treatment without excessive toxicity



- Risk of undertreatment: early relapse
- Risk of overtreatment: early treatment discontinuation

Current standards of care for newly diagnosed elderly myeloma patients

Fixed duration/
Alkylator-based regimens¹

Continuous treatment/ Alkylator-free regimens¹

Rd

One randomized trial⁵
Benefit in
PFS vs MP

Six randomized trials²
Benefit in
PFS & OS
vs MP

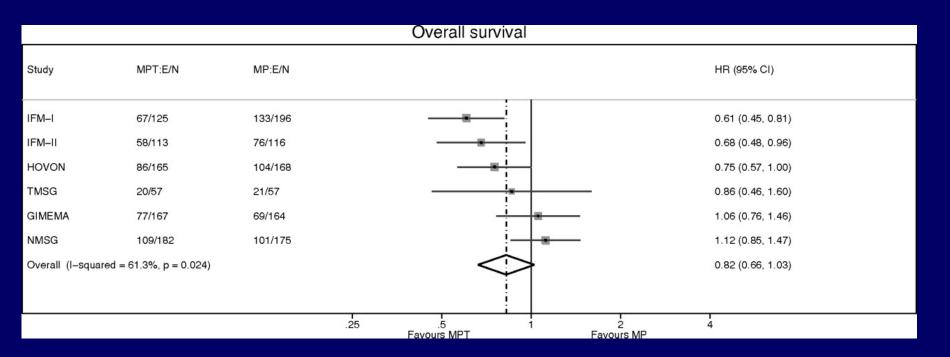
One randomized trial^{3,4}
Benefit in
PFS & OS
vs MP

One randomized trial⁵
Benefit in
PFS & OS
vs MPT

MP, melphalan-prednisone; MPT, melphalan-prednisone-thalidomide; VMP, bortezomib-melphalan-prednisone; Rd, lenalidomide plus low-dose dexamethasone; PFS, progression-free survival; OS, overall survival.

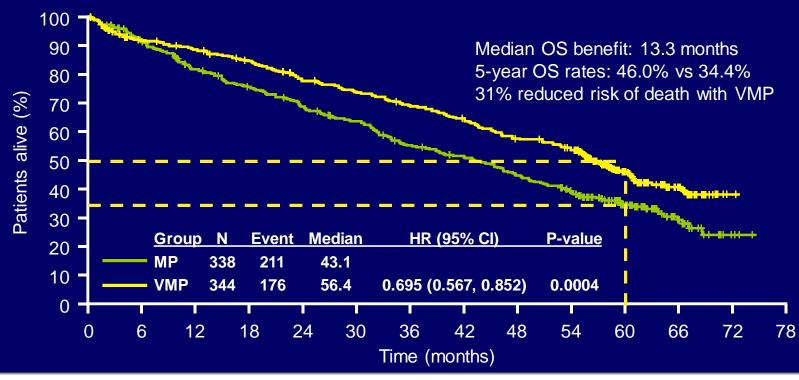
1. Moreau P, et al. Blood. 2015;125:3076-84.

2. Fayers PM, et al. Blood. 2011;118:1239-47.

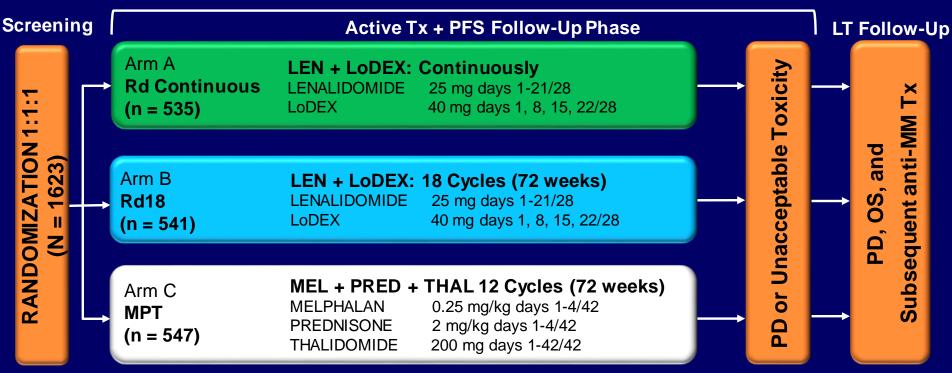

3. San Miguel JF, et al. N Engl J Med. 2008;359:906-17.

4. San Miguel JF, et al. J Clin Oncol. 2013;31:448-55

5. Palumbo et al. New Engl J Med 2012;366:1759


6. Benboubker L, et al. N Engl J Med. 2014;371:906-17.

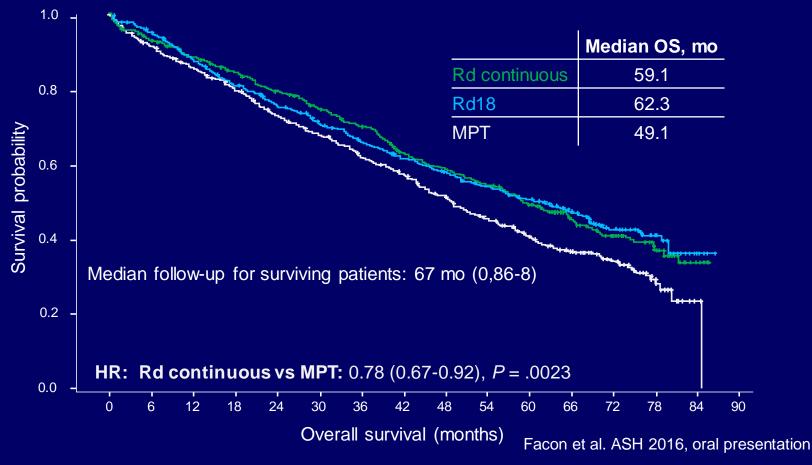
Melphalan-prednisone-thalidomide (MPT)


- n = 1685 patients
- better 1-y response rates with MPT (PR or better: 59% vs 37%)
- median OS time increased from 32.7 mo to 39.3 mo (p = 0.004); increase with 6.6 mo

Melphalan-prednisone-bortezomib (VMP)

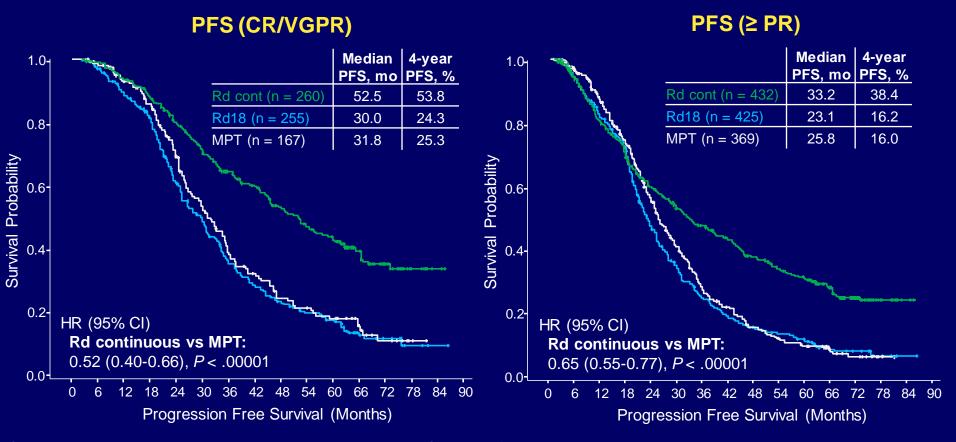
			MP		VMP	
Group	Estimate 95% CI		Events/n	Median	Events/n	Median
Age, years < 75 ≥ 75	0.69 0.53 to 0.89 0.70 0.49 to 1.01	→	136/237 75/101	47.7 32.9	113/237 63/107	58.6 50.7

FIRST (MM-020): Study Design



Pts > 75 y: LoDEX 20 mg days 1, 8, 15, 22/28; THAL 100 mg days 1-42/42; MEL 0.2 mg/kg days 1-4

- Stratification: Age (≤ 75 y vs > 75 y), country, and ISS stage (I/II vs III)
- Thromboprophylaxis was mandatory
- Data cutoff: January 21, 2016


Overall Survival

 The pre-specified final OS analysis for the primary comparison shows Rd continuous significantly extended OS compared with MPT

Progression-Free Survival by Response

 Median PFS was prolonged in patients who responded to Rd continuous vs MPT, particularly in those who achieved a deeper response (CR/VGPR)

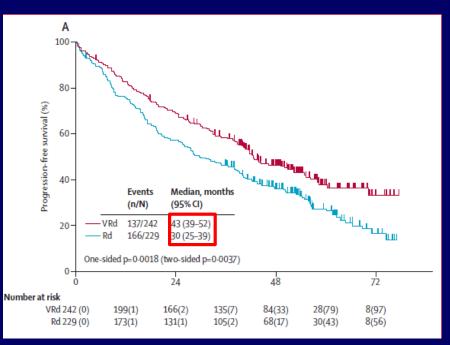
CR, complete response; HR, hazard ratio; MPT, melphalan, prednisone, thalidomide; PFS, progression-free survival; PR, partial response; Rd continuous, lenalidomide plus low-dose dexamethasone until disease progression; Rd18, lenalidomide plus low-dose dexamethasone for 18 cycles; VGPR, very good partial response.

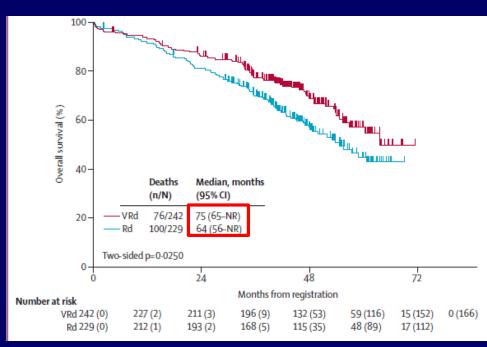
VRd vs Rd: SWOG S0777 trial

8 x VRd (21 days)

V: bortezomib 1,3 mg/sm IV d1,4,8,11 R: lenalidomide 25 mg/d d1-14 d: dexamethasone 20 mg/d d 1,2,4,5,8,9,11,12

6 x Rd (28 days)


R: lenalidomide 25 mg/d d1-21 d: dexamethasone 40 mg/d d 1,8,15,22

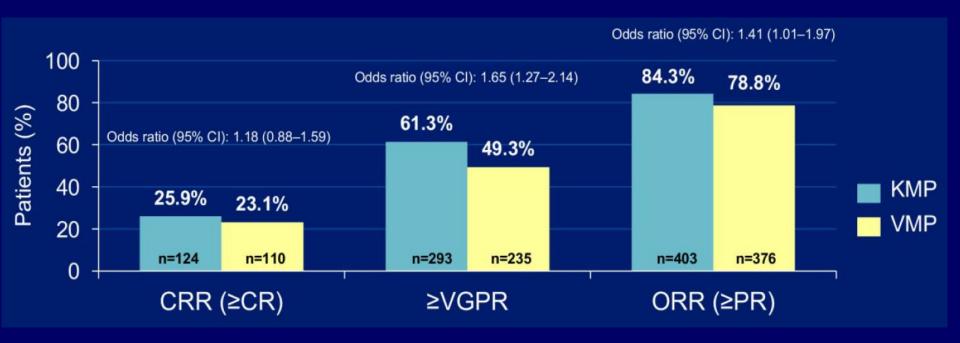


VRd vs Rd: SWOG S0777 trial Results for PFS and OS

Progression-free survival

Overall survival

- 43% of patients were > 65 y
- For high-risk cytogenetics: median PFS: 38 mo vs 16 mo


Aiming too high in the very elderly: the MPR story

	MPR ^a	MP
Discontinuation rate ^b		
65 - 75 years of age	17%	10%
> 75 years of age	34%	16%
Cumulative dose intensity ^c		
65 - 75 years of age	88%	97%
> 75 years of age	56%	97%

^a MPR includes MPR-R and MPR for the initial 9 cycles. ^b Discontinuation due to AEs or withdrawal of consent

^c Cumulative dose intensity of melphalan and lenalidomide/placebo

Carfilzomib-melphalan-prednisone (KMP) vs bortezomib-melphalan-prednisone (VMP) Responses and toxicities

- Grade ≥3 hypertension, dyspnea, acute renal failure, and cardiac failure were higher with KMP than VMP
- Grade ≥2 peripheral neuropathy rates were lower with KMP (2.5%) than VMP (35.1%)
 - 69% of patients in VMP group received subcutaneous bortezomib throughout their treatment

Frail patients with comorbidities are underrepresented in clinical trials

Table 2. Frequencies of exclusion criteria that might negatively affect the inclusion of older individuals in ongoing clinical trials regarding hematologic malignancies. (n = 85 clinical trials)

(n = 85 clinical trials)				
Exclusion criterion	Frequency, N. (%)			
Upper age limit	35 (41.18)			
Reduced life expectancy	23 (27.06)			
Drug therapy (at least one drug)	53 (62.35)			
Abnormal laboratory result (at least one)	69 (81.18)			
Cognitive impairment	5 (5.88)			
Physical disability	62 (72.94)			
Inability to give informed consent	32 (37.65)			
Inability to attend follow-up visit	5 (5.88)			
Physician's judgement	23 (27.06)			
Reduced compliance	28 (32.94)			
Comorbidity (at least one disease)	77 (90.59)			
Specific disease	<u> </u>			
Renal failure	60 (70.6)			
Cardiovascular	56 (65.9)			
Infectious	47 (56.6)			
Hematologic	39 (45.9)			
Lung	33 (38.3)			
Psychiatric	31 (36.5)			
Previous cancer	18 (21.2)			
Gastrointestinal	17 (20)			
Neurological	15 (17.6)			
Liver	8 (9.6)			

"The main finding from our study is that older patients are still commonly excluded from clinical trials on hematologic malignancies"

The IMWG frailty scoring system

 Patients are categorized into 3 severity groups: fit, intermediate or frail

IMWG Frailty Scale ¹		Score
Age		
≤ 75 yrs		0
76–80 yrs		1
> 80 yrs		2
Activity of Daily Living score		
> 4		0
≤ 4		1
Instrumental Activity of Daily Living score		
> 5		0
≤ 5		1
Charlson Comorbidity Index score		
≤ 1	Total score:	0
≥ 2		1
IMWG, International Myeloma Working Group.	0: Fit	
	1: Into	ermediate

Palumbo A, et al. Blood. 2015;125:2068-74.

≥ 2: Frail

An intuitive approach for 'vulnerable' MM patiens

Risk factors

- age over 75 y
- mild, moderate or severe frailty
- comorbidities: cardiac/pulmonary/hepatic/renal dysfunction

GO-GO

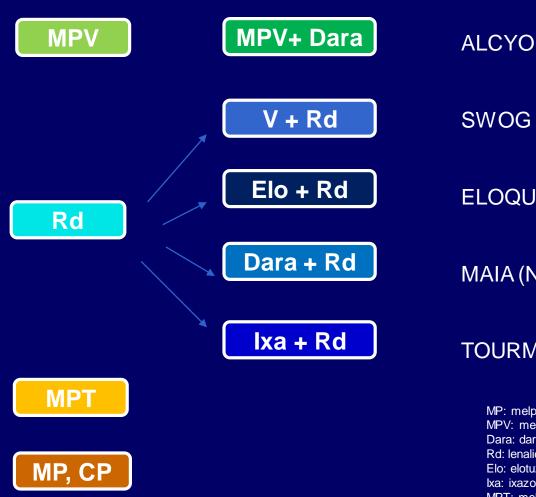
no risk factors

Dose level 0

MODERATE-GO

at least one risk factor

Dose level - 1


SLOW-GO

at least one risk factor plus occurence of grade 3-4 non-hematol. AE

Dose level - 2

Future standards of care for newly diagnosed elderly myeloma patients

ALCYONE (NCT 02195479)

SWOG S0777

ELOQUENT-1 (NCT 01335399)

MAIA (NCT 02252172)

TOURMALINE MM2 (NCT 01850524)

MP: melphalan, prednisone

MPV: melphalan, prednisone, bortezomib

Dara: daratumumab

Rd: lenalidomide. dexamethasone

Elo: elotuzumab lxa: ixazomib

MPT: melphalan, prednisone, thalidomide CP: cyclophosphamide, prednisone